Деревья решений (decision trees)
Данный метод пригоден только для решения задач классификации, и поэтому весьма ограниченно применяется в области финансов и бизнеса, где чаще встречаются задачи численного прогноза. В результате применения этого метода к обучающей выборке данных создается иерархическая структура классифицирующих правил типа "ЕСЛИ... ТО...", имеющая вид дерева (это похоже на определитель видов из ботаники или зоологии). Для того чтобы решить, к какому классу отнести некоторый объект или ситуацию, мы отвечаем на вопросы, стоящие в узлах этого дерева, начиная с его корня. Вопросы имеют вид "значение параметра A больше x?". Если ответ положительный, мы переходим к правому узлу следующего уровня, если отрицательный - то к левому узлу; затем снова отвечаем на вопрос, связанный с соответствующим узлом. Так мы в конце концов доходим до одного из оконечных узлов - листьев, где стоит указание, к какому классу надо отнести рассматриваемый объект. Этот метод хорош тем, что такое представление правил наглядно и его легко понять. Но очень остро для деревьев решений стоит проблема значимости. Дело в том, что отдельным узлам на каждом новом построенном уровне дерева соответствует все меньшее и меньшее число записей данных - дерево дробит данные на большое количество частных случаев. Чем больше этих частных случаев, чем меньше обучающих примеров попадает в каждый такой частный случай, тем менее уверенной становится их классификация. Если построенное дерево слишком "кустистое" - состоит из неоправданно большого числа мелких веточек - оно не будет давать статистически обоснованных ответов. Как показывает практика, в большинстве систем, использующих деревья решений, эта проблема не находит удовлетворительного решения. Довольно много систем используют этот метод. Самыми известными являются С5.0 (RuleQuest, Австралия), Clementine (Integral Solutions, Великобритания), SIPINA (University of Lyon, Франция). Из доступных в России можно назвать IDIS (Information Discovery, США). Стоимость этих систем варьируется от 10 до 100 тыс. долл.